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Abstract

In the work presented here we propose an extended ap-

proach for the TWA modeling and detection based on a

previous method presented in CinC07. To this aim, the

ECG amplitude modulation and the baseline wander in the

ST-T segment are approximated by a scaling factor applied

to the T wave added to a constant. Thanks to this simplifi-

cation, the proposed global model of each ST-T segment is

constituted by the scaled T wave, an offset and the shape

of the alternans. In addition to the modeling we also in-

troduce a method to address the problem of the estima-

tion of the T wave, the offset and the alternans shape and

their respective coefficients. Thus, a model-based detec-

tor can be derived such as the generalized likelihood ratio

test. Through this detection scheme, the orthogonality of

the models is addressed and solved by imposing some con-

straints. The application of these constraints is driven by

a student-t test output applied to the estimated parameters

but also on the energy of the reconstructed T waves. An al-

ternative detector based on a Principal Component Analy-

sis is also proposed. Here again the presence of a baseline

residual is accounted in the analysis. Since the last stage

of the latter detector utilizes a student-t the selection of an

optimal threshold is avoided. These detectors and alter-

nans wave estimators are applied to the data set proposed

by the CinC Challenge. It is shown that when applied on

even short duration alternans it produces positive results.

It is also shown that under the scope of the challenge the T

waves segmentation plays an important role.

1. Introduction

It is well known that the event called T wave alternans

(TWA) is a marker of cardiac instability and high risk of

sudden death. Recently, index of presence of such event

are used to decide whether a device has to be implanted.

This phenomenon is observable with high rate of internal

pacing, during coronary angioplasty intervention or when

patients perform graded and maximal exercise test. The

latter experiment does not need surgery and is a good can-

didate for TWA investigation. Unfortunately, because of

the body motion observable during the exercise and an in-

creasing tidal volume due to the effort, it exists a large

modulation of the ECG signal added to a baseline wander

larger than during resting conditions. Note that the ECG

amplitude modulation and the baseline are also present in

classical TWA records. It exists very few studies linking

the TWA analysis performance to these sources of artifacts

[1].

The CinC challenge propose a large variety of TWA

episodes including a large number of simulated TWA with

different magnitudes of the alternans waves. These sim-

ulated records are mostly affected by amplitude modula-

tion and QT changes due to the varying heart rate. Since

the ground truth is unknown for the remaining records, a

global average of the entries from all participants forms the

reference.

In [3] a detector based on the GLRT approach has been

proposed to account for modulation and baseline artifacts.

It has been named hybrid because in addition to the GLRT

the computation of the modelling error used a student-t

test applied to the scaling and offset parameters. It will

be shown in the sequel that the test can be extended to a

third parameter that is the energy of the reconstructed sig-

nal. This extension is supposed to alleviate the artificial

description of the alternans by using the scaling and offset

parameters.

Following the same idea that the observations model

should take into account the recording artifacts, a second

detector is proposed. It makes use of the singular vectors

from the SVD of all the T wave segments. In that case, it is

expected that the alternans wave participates to the overall

variance and thus is contained in the singular vectors cor-

responding to the highest singular values. Unlike the first

detector, this approach will get rid off the threshold selec-

tion pitfall by using a t-test of the projection coefficients.

As it will be shown, the projection vectors will provide

three coefficients that will be tested. The sensitivity will

be maximized by accepting the detection if at least one of

the three tests is positive.

To conclude the paper, some results from the challenge

database are provided. It will be shown that the T waves

segmentation strategy alters significantly the performances
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of the detectors. Segmentations based on the Bazett cor-

rection, the position of the T wave apex, the T wave off-

set location have been chosen as available strategies. It

shows that the performance of any TWA detector and es-

timator not only relies on the model itself but also on the

preprocessing.

2. Methods

In [3] the model that defines the N samples xi as the

observed i’th T has been proposed such as:

xi = αi(T + a(−1)iv) + βi1I (1)

where T, v, αi, βi stand for the T wave, the alternans wave,

a magnitude coefficient, the offset, respectively. The vec-

tor 1I will correspond to the unit vector. The binary value 0
or 1 for the a variable will permit us to distinguish or detect

the episodes of TWA. This model accounts for a baseline

component that is assumed to be constant in the T wave

interval. The magnitude coefficient represents the modula-

tion of the ECG signal during the recording.

Assuming a sliding window of length L, the segmented

T wave will be grouped with L consecutive xi (i =
1 . . . L). The presentation of the method can be simplified

considering only one group, i.e. one window. The GLRT

distinguishes the two hypotheses applied to the model (1):

H0 : a = 0 and H1 : a = 1.

As shown in [3], the derivation of the GLRT should in-

volve the computation of the estimated T by using the sam-

ple mean T̂ = 1/L
∑

i=L

i=1 xi. The estimation of v is more

tedious and need the computation of the alternated sample

mean x̃ = 1/L
∑

i=L

i=1 (−1)ixi. Residual T and 1I in x̃ can

be reduced applying:

v̂ = (I − [T̂ 1I][T̂ 1I]#)x̃ (2)

where # stands for the pseudo-inverse and I the identity

matrix. Once T and V have been estimated, the parametric

models, that will be implied in the detection scheme, will

be:

H0 : xi = [T̂ 1I]θi = M0θi (3)

H1 : xi = [T̂ + (−1)iv̂ 1I]θi = M1θi (4)

with θ = [αi βi]
T . The non-orthogonality of the two

models has been solved in [3] by using the constrains
∑

L

i=1(−1)iαi = 0 and
∑

L

i=1(−1)iβi = 0 in H0. Thus,

the estimation of the parameters vector in H0 is performed

by using a constrained least square approach [3].







θ̂1, . . . , θ̂L = arg min
∑

L

i=1 ‖xi − M0θi‖
2

subj
∑

L

i=1(−1)iαi = 0;
∑

L

i=1(−1)iβi = 0

(5)

Prior to apply the constrains, a t-test has been applied to

the two unconstrained parameters αi and βi. If positive

(p < 0.01), the corresponding constrain on αi and/or βi in

(5) is applied. In addition to this test applied separately to

αi and βi, a third test can be applied to the estimated ob-

servation set x̂i = M0θ̂i, where θ̂i is the unconstrained es-

timated vector. Both constrains in (5) will be applied if the

energy of the estimated observation passes successfully the

t-test. Although evidence of optimality is not given here,

this additional test reduces the effect of sharing the alter-

nans information within the two parameters thus reducing

the detection performance.

When the data in the sliding window produce a positive

detection, its corresponding alternans wave (TWA) can be

computed using the estimated parameters from the models

[3].

One major drawback of such detector is the correct se-

lection of the detection threshold γ. Since the output of the

GLRT is a function of the TWA magnitude and the depar-

tures from the real observations regards the model, to set

a correct threshold for a large variety of records is tedious.

We propose in the following an alternative approach that

get rid off this setting and still accounts for baseline resid-

ual.

The derivation of the second detector is based on the

observation model:

xi = (v1 v2 1I) θi + bi = Mrθi + bi (6)

with 1I the unit vector. Note that while the noise is added

in (6) to be consistent with [4], it also has been taken into

account in the previous detector. This expression can be

compared to (1) where v1 and v2 play the role of T and v

respectively. In real case, MT

r
Mr is not equal to the unit

matrix because there is no evidence that v1, v2 and 1I are

mutually orthogonal. Assuming that the overall variance of

the observations is due to the scaled T waves, the presence

of the alternans waves and the offsets, an SVD applied to

the matrix of the observation X = [x1 . . . xJ ] should

produce singular vectors related to T and v.

We consider here the subspace 〈K〉 corresponding to the

reduced-rank least square approximation of the subspace

〈Mr〉 imposing the partition K = [Ka A], withKa a full-

rank matrix and A a rank q matrix constituted by known

vectors. As proven in [4], the least square approximation

of the rank p subspace that best describe 〈X〉 will corre-

spond to the subspace that span the vectors in U associ-

ated to the p − q highest singular values in S, such that

(I − AA#)X = USVT , appended to the vectors in A. In

the text, the symbol # will stand for the pseudo-inverse.

Since vector 1I is supposed to model the offset due to the

residual baseline, the matrix A will contain only 1I. The

matrix Ka will be constituted by the vectors in U associ-

ated to the two highest singular values in S, namely u1 and
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u2. Thus the observation model can be approximated as:

xi ≈ (u1 u2 1I) θi + bi = Kθi + bi (7)

Thanks to the properties of K, each vector θi is estimated

in the least square sense by :

θ̂i = KT xi (8)

Once all vectors θ are estimated, the detection of the al-

ternans episodes is performed by using a t-test on each

component of the vectors. In order to account for the

variation of the TWA presence, the t-test is applied on L
length sliding window and not on the entire data. For a

given a significance value, the selection of the detection

threshold is straightforward. The vector of parameters is

3-dimensional, producing three detector outputs, one for

each component. The sensitivity of the detector is maxi-

mized by concluding that a TWA is present when at least

one detector output is positive. It should be noted that the

number of vectors in K has been voluntarily reduced in or-

der to avoid the sharing of the TWA information on a large

number of component that could lead to a lack of sensitiv-

ity.

The alternans wave can be estimated using the estimated

observation x̂i = Kθ̂i processed by the alternated average

v̂ = 1/L
∑

i=L

i=1 (−1)ix̂i. In order to be consistent with the

detector results, the alternans wave estimation is only com-

puted on the window corresponding to a positive detection.

3. Results

The two presented detectors added to the classical

GLRT given in [2] are applied to simulated data from [3]

and from the CinC 2008 Challenge. In the former case,

the parameters of the simulation are fully known unlike

the latter where the magnitude of the TWA is only given.

The data set from [3] is constituted by T waves already

perfectly segmented that differs from the second where the

entire 12-leads ECG is given.

In the first simulated data set, a 500mV T wave con-

stituted the vectors xi with a 16mV alternans waves. The

scaling factors αi and offsets β have been chosen as in [3].

The first alternans wave is a large gaussian-like shape that

appears within the index range [20-40]. The second al-

ternans wave is a narrow gaussian-like shape that appears

within the index range [80-100]. From the example in fig.

(1), it is clear that while the GLRT detector (L = 16) pro-

posed here exhibits good performances compared to the

classical one, the difficulty in choosing the best threshold

is not alleviated. The SVD-based detector proposed here

as an alternative have been also applied to the same data

set. Here again, results are in agreement with the simula-

tion since at least one t-test is positive in a correct index

interval. Apart from the detection, the TWA estimation is
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Figure 1. The outputs of the GLRT detector proposed

in this paper (solid line) and the reference GLRT detector

(dotted line)

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

wave index i

S
V

D
−

b
a
se

d
 d

e
te

ct
o
r 

o
u
tp

u
ts

Figure 2. The three outputs of the SVD-based detector.

The t-test results are given for the three parameters related

to u1 (solid line), u2 (dots), 1I (stars). The horizontal line

placed at the value 2.92 corresponds to p = 0.01 with L =
16

also of interest. On this example, the maximal TWA mag-

nitude of detected episodes is 10.7mV, 19.2mV, 14.5mV

for the new GLRT detector, the reference GLRT detector,

the SVD-based detector, respectively. The next results il-

lustrate how the T wave segmentation alters the detection

performances. To this aim three techniques have been ap-

plied: a constant position window, a variable window cor-

rected by using the well known Bazett formula, a window

centered on the apex of each T wave. The record 91 from

the challenge database has been chosen. This record being

a simulated one, the TWA has been added with a maximal

magnitude of 60mV on the lead V3. In fig. (3) and (4)

results from the two GLRT detectors are plotted where it is
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Figure 3. Outputs of the GLRT detector presented here for

the three segmentations: constant position window (solid

line), Bazett correction (dot point), aligned on the apex

(star point)
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Figure 4. Outputs of the reference GLRT detector for

the three segmentations: constant position window (solid

line), Bazett correction (dot point), aligned on the apex

(star point)

clear that best results are obtained using the third segmen-

tation. In fig. (5), the SVD-based detector is applied on the

third segmentation because for the others the behavior is

the same than in fig. (3) and (4). Surprisingly they all esti-

mate the maximal TWA magnitude around 22mV whereas

the simulated value is 60mV. In spite of the fact that the

data are simulated, one could conclude that an adapted seg-

mentation is needed to improve the detection.

4. Discussion and conclusions

The inclusion of artifacts such as the modulation and

offset due to the baseline is rarely accounted in the model

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

wave index i

S
V

D
−

b
a
se

d
 d

e
te

ct
o
r 

o
u
tp

u
ts

Figure 5. The three outputs of the SVD-based detector for

segmentation based on the apex location

of TWA observations. We have attempted to introduce

this idea since CinC 2007 by proposing an extension of

the so-called GLRT detector. The problem of the non-

orthogonality of the models under the two hypotheses have

been solved by using constrains in the estimation process.

We have presented here a refinement in the application of

these constrains. While this family of detector is efficient

the pitfall of the threshold setting is not really alleviated.

Thus we have oriented the work toward detectors based

on SVD that includes the presence of offset, where the fi-

nal step makes use of a t-test. The selection of the detec-

tion threshold is thus straightforward. Few results from the

CinC 2008 Challenge database show that the segmentation

of the T waves should be done with care.
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